Using Generative Models for Handwritten Digit Recognition
نویسندگان
چکیده
We describe a method of recognizing handwritten digits by tting generative models that are built from deformable B-splines with Gaussian \ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classi cation of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of tting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques. Index TermsDeformable model, elastic net, optical character recognition, generativemodel, probabilistic model, mixture model.
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملnerative Models for andwritten Digit Recognition
We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable Bsplines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has ma...
متن کاملA Dynamic Bayesian Network Based Structural Learning towards Automated Handwritten Digit Recognition
Pattern recognition using Dynamic Bayesian Networks (DBNs) is currently a growing area of study. In this paper, we present DBN models trained for classification of handwritten digit characters. The structure of these models is partly inferred from the training data of each class of digit before performing parameter learning. Classification results are presented for the four described models.
متن کاملRecognition of Handwritten Arabic (Indian) Numerals using Radon- Fourier-based Features
This paper describes a technique for the recognition of off-line handwritten Arabic (Indian) numerals using Radon-Fourier-based features. A two stage classification scheme is used. The Nearest Mean (NMC), K-Nearest Neighbor (K-NNC), and Hidden Markov Models (HMMC) Classifiers are used in the first stage and a Structural Classifier (SC) is used in the second stage. A database of 44 writers with ...
متن کاملLearning the Structure of Sum-Product Networks via an SVD-based Algorithm
Sum-product networks (SPNs) are a recently developed class of deep probabilistic models where inference is tractable. We present two new structure learning algorithms for sum-product networks, in the generative and discriminative settings, that are based on recursively extracting rank-one submatrices from data. The proposed algorithms find the subSPNs that are the most coherent jointly in the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 18 شماره
صفحات -
تاریخ انتشار 1996